헬스 케어 인공 지능 | 헬스케어 기술도 Ai가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/Mbc) 25050 명이 이 답변을 좋아했습니다

당신은 주제를 찾고 있습니까 “헬스 케어 인공 지능 – 헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC)“? 다음 카테고리의 웹사이트 you.tfvp.org 에서 귀하의 모든 질문에 답변해 드립니다: https://you.tfvp.org/blog/. 바로 아래에서 답을 찾을 수 있습니다. 작성자 MBCNEWS 이(가) 작성한 기사에는 조회수 11,583회 및 좋아요 98개 개의 좋아요가 있습니다.

헬스 케어 인공 지능 주제에 대한 동영상 보기

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

d여기에서 헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC) – 헬스 케어 인공 지능 주제에 대한 세부정보를 참조하세요

세계 최대 가전제품 전시회인 CES에서 올해 또다른 주역은 바로 헬스 케어, 그러니까 건강에 관련된 신제품들 이었습니다. 운동부터 수면 관리까지.
여기서도 역시 인공지능이 대세였는데요.
코로나19 확산 이후 스스로 건강 상태를 진단하려는 사람들이 늘면서 각광을 받고 있다고 합니다.
https://imnews.imbc.com/replay/2022/nwdesk/article/6330930_35744.html

#헬스케어 #AI #CES

헬스 케어 인공 지능 주제에 대한 자세한 내용은 여기를 참조하세요.

인공지능 헬스케어

인공지능 기술의 발전을 통해 미래 헬스케. 어 서비스는 방대한 양의 유전자 정보를 스스로 분석하고 학습하여. 질환 발현시기를 예측하거나, 개인 맞춤형 진단 및 생활 …

+ 여기에 보기

Source: www.hnconsulting.co.kr

Date Published: 4/17/2022

View: 1866

빠르게 성장하는 디지털 헬스케어 인공지능 시장 – Vol.67

현재 헬스케어에서 활발하게 인공지능이 적용되고 사례도 많이 알려진 분야가 이미지 인식을 중심으로 한 진단 분야이다. 이는 현재의 인공지능 시대를 이끈 머신러닝/딥 …

+ 여기에 보기

Source: www.kca.kr

Date Published: 5/11/2022

View: 8181

[특집] 인공지능과 헬스케어의 융합, 기술사업화 시장 키운다

인공지능 헬스케어는 △신속 정확한 정밀 진단 및 치료 △일관성 있는 개인별 맞춤형 질병 예측 및 예방 △시공간의 제약이 없는 측정, 진료 등의 특징을 …

+ 더 읽기

Source: www.elec4.co.kr

Date Published: 3/21/2021

View: 442

헬스케어산업에서의 인공지능 활용 동향 – KoreaScience

본 연구에서는 헬스케어 산업 다양한 분야에서 인공지능의 활용 사례에 대해. 알아보고, 헬스케어의 최신 이슈사항이 무엇인지 서술하여 의료산업 전반에 도움을 주고 …

+ 여기를 클릭

Source: www.koreascience.or.kr

Date Published: 12/25/2022

View: 617

Tech Issue – 헬스케어를 주름잡는 AI 기술 성공사례_인공지능 …

인공지능은 혈액, 유전자, 신체조직 등을 면밀히 분석해 병의 발병 상황 및 그 가능성을 판단해 즉시 알려줄 것이며, 질병이 있는 환자의 경우 면밀히 분석한 데이터를 …

+ 더 읽기

Source: webzine.koita.or.kr

Date Published: 4/23/2021

View: 9224

다양한 헬스케어 기술…인간의 삶의 질을 향상시켜 – AI타임스

다양한 헬스케어 기술을 통한 의료 혁신이 빠르게 이뤄지고 있어 인류의 삶의 질이 급속히 개선될 전망이다. 현재 의료 산업은 인공지능, 모바일 기술 …

+ 자세한 내용은 여기를 클릭하십시오

Source: www.aitimes.com

Date Published: 4/7/2022

View: 6322

건강을 지키는 인공지능 AI와 헬스케어의 만남 – SK DT Hub

인공지능 기술이 떠오르기 시작한 순간부터 의료, 헬스케어 분야는 많은 전문가로부터 관심을 받는 분야였습니다. 인공지능이 학술지, 논문, 진료 정보를 학습하여 …

+ 더 읽기

Source: skdt.co.kr

Date Published: 2/29/2022

View: 9940

헬스케어 인공지능 기술의 활용 동향 – ITFind

연산 능력을 지닌 인공지능 헬스케어시스템에 대한 의료소비자들의 신뢰가 점점 커지고 있다. 딥러닝. 기술의 비약적인 발전과 의사의 한계, …

+ 여기를 클릭

Source: www.itfind.or.kr

Date Published: 1/20/2022

View: 5970

헬스케어 인공지능 – YES24

헬스케어 인공지능의 개념과 기술, 디바이스, 진단 및 치료 등 활용 분야를 사례 중심으로 설명한 헬스케어 인공지능 지침서!

+ 여기에 보기

Source: www.yes24.com

Date Published: 9/27/2022

View: 6851

주제와 관련된 이미지 헬스 케어 인공 지능

주제와 관련된 더 많은 사진을 참조하십시오 헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC). 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC)
헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC)

주제에 대한 기사 평가 헬스 케어 인공 지능

  • Author: MBCNEWS
  • Views: 조회수 11,583회
  • Likes: 좋아요 98개
  • Date Published: 2022. 1. 7.
  • Video Url link: https://www.youtube.com/watch?v=2560QklqKsk

Vol.67

Intro 들어가며 시장 데이터 전문 기업 스태티스타(Statista)는 2025년 세계 디지털 헬스케어 시장이 약 6,570억 달러 규모로 성장할 것으로 예측했다. 2019년 약 1,750억 달러, 올해 2,680억 달러를 거쳐 연평균 성장률(CAGR)이 25%에 이르는 높은 성장을 지속할 것이라는 전망이다. [2019~2025년 세계 디지털헬스 시장 예상 규모(스태티스타)] 또, 스태티스타는 헬스케어 가운데 인공지능이 차지하는 시장 규모가 2025년에 약 280억 달러에 이를 것으로 예측했다. 헬스케어 인공지능 시장 규모는 2016년 약 11억 달러, 2017년 약 14억 달러였던 것에 비해 매우 많이 증가한 것이다. 2017년 시장 규모를 기준으로 2025년까지의 연평균 성장률(CAGR)이 약 45%에 이를 정도로 전체 시장에 비해서도 매우 빠르게 성장하는 시장임을 알 수 있다.

Application of image-based AI 영상 진단 중심의 이미지 기반 인공지능 적용 현재 헬스케어에서 활발하게 인공지능이 적용되고 사례도 많이 알려진 분야가 이미지 인식을 중심으로 한 진단 분야이다. 이는 현재의 인공지능 시대를 이끈 머신러닝/딥러닝 기술의 발달과 그 궤적을 함께 한다. 잘 알려진 바와 같이 머신러닝 기술의 부흥은 앤드류 응 교수가 머신러닝 기술로 고양이 이미지를 식별하는데, 성공한 2012년 구글 브레인 프로젝트와 논문에서 시작된다. 이후 인공지능을 적용한 혁신 사례들이 등장하기 시작했는데 응 교수의 논문을 포함해 많은 경우 이미지 인식과 관련이 있다. 이는 기술적으로 머신러닝 기술이 이미지 분석에 강점이 있었기 때문인데, 헬스케어 분야도 이미지 인식과 진단에서 괄목할 성과들이 나오는 것도 같은 맥락에서 이해할 수 있다. 임상 현장에서 영상 진단은 X-레이, CT, MRI, 초음파 등의 기기를 통해 습득한 영상 정보를 판도하는 방식으로 이뤄진다. 이들 영상은 비침습적 방법으로 신체 상태, 질병 유무에 대한 정보를 효과적으로 습득할 수 있다는 장점이 있다. 하지만 의사라 하더라도 전문적인 영상 판독 훈련을 받지 않은 경우 높은 진단 정확도를 기대하기 어렵고, 영상의학 전문의라도 개인 역량에 의존할 수밖에 없는 분야가 영상 판독 분야다. 이런 문제를 극복하기 위해 해상도를 높이고, 조영제를 활용하거나 입체영상을 만드는 등 많은 기술적 발전이 이뤄져 왔고, 이제는 인공지능이 영상 판독의 정확성을 높이는 데 기여하고 있다. 인공지능이 영상 판독에 적용된 사례로 폐를 촬영한 X-레이 영상에 인공지능이 폐 질환이 의심되는 부위를 표시해주는 솔루션을 개발한 루닛이 있다. 이 솔루션은 인공지능이 폐 질환의 유무와 질환의 종류를 판별하는 것이 아니라 의사가 영상 판독에 도움을 받을 수 있도록 보조하는 방식을 사용하고 있다. 의사와 인공지능이 협력할 때 의사나 인공지능이 단독으로 판독할 때보다 정확도와 신뢰성이 높다는 것을 확인했기 때문이다. 이외에도 의료 사고에서의 책임 문제, 의료비 청구를 위한 비용의 문제 등도 고려된 것으로 알려졌다. 이외에도 뷰노, 제이엘케이인스펙션 등도 영상 판독과 관련된 솔루션을 개발하여 상용화에 박차를 가하고 있다.

R&D of New Drugs using AI 신약 연구 개발에서의 인공지능 활용 신약 개발로 창출되는 부가가치는 매우 크다. 많은 제약‧바이오 기업이 주목받고 투자를 받는 것도 미래 가치에 대한 기대감 때문이다. 하지만 신약을 개발하는 과정은 큰 비용과 긴 시간이 필요하다. 일반적으로 신약 개발은 후보물질 발굴, 전임상, 임상, 허가 및 시판의 과정을 거치며, 전통적인 방법으로 새로운 물질의 도출에서 최종 상용화까지는 약 15년이 걸린다고 한다. 그런데도 상용화에 성공하는 경우는 1%도 되지 않는다. 제약회사는 신기술을 적용해 시간과 비용을 줄이고자 하며, 최근 급속히 발전한 인공지능 기술도 제약 분야에 도입된 중요한 신기술 가운데 하나다. 신약 개발에서 인공지능이 가장 성공적으로 활용되는 단계는 후보물질 발견 단계다. 후보물질 발견 단계에서는 신약 개발 대상 질병을 선정하고 관련 연구 논문 등의 자료를 탐색해 치료제의 후보 물질을 선정한다. 이때 탐색의 대상이 되는 자료는 논문, 보고서, 생물학 정보 데이터 등으로 종류도 다양하고 그 분량도 지수적으로 증가하고 있다. 이렇게 많은 자료에서 수백 개에 이르는 요소들을 비교 검토해 후보물질을 발견하는데, 전 과정에 5년 정도의 시간이 걸린다. 인공지능은 자료 검토를 통한 화합물 탐색, 탐색 된 화합물 구조 정보와 단백질 결합능력의 계산 등을 통해 후보물질 발견 단계에서 소요 시간과 비용을 크게 줄여준다. [알파폴드: AI사용 신약후보물질 발견 (딥마인드)] 지난해 12월 딥마인드가 발표한 새로운 인공지능 ‘알파폴드’도 신약 후보물질 발견에 크게 기여할 것으로 기대되는 성과 가운데 하나다. 당시 딥마인드는 알파폴드가 단백질 구조 예측에서 실제 단백질 구조와 90% 이상 일치하는 정확도를 보였다고 밝혔다. 단백질은 다양한 아미노산이 사슬처럼 얽혀져 3차원의 입체 구조를 이루고 있다. 단백질 구조를 알기 위해서는 구성 아미노산을 파악하고 개별 아미노산 간의 상호작용을 계산하는 고도의 물리적, 생화학적 연구가 필요하다. 알파폴드는 복잡한 연구 과정 없이 과거 데이터를 바탕으로 높은 정확도로 계산하는 데 성공한 것이다. 이 기술을 활용하면 치료 대상 질병과 관련된 단백질 구조를 과거보다 빠르고 저렴하게 분석할 수 있게 되고, 신약후보물질이 해당 단백질에 효과적으로 적용될 수 있는지 파악하는 데도 도움이 된다.

AI for Clinic & Patient Care 진료와 환자 관리를 위한 인공지능 COVID-19 상황으로 대변 접촉이 제한되는 상황은 의료 현장에도 적용되고 있다. 이런 상황에서 대안으로 주목받는 영역이 원격 상담, 원격 진료, 원격 모니터링 등 비대면 의료이다. 병원 방문 전 단계에서 환자에 대한 상담과 관리, 대면 진료가 어려운 상황에서의 환자의 진료, 환자 관리를 위한 지속적인 모니터링 등 각 단계에서 환자와 의료진 간의 접촉을 줄이는 한편, 효과적으로 의료 행위를 할 수 있는 다양한 솔루션이 개발되고 있다. 이런 과정에 의료진을 보조하거나, 의료진의 개입을 줄이는 방향으로 인공지능을 접목하려는 다양한 시도가 이뤄지고 있다. 원격 상담과 원격 진료에서 인공지능은 챗봇과 같은 형태로 적용된다. 의료진과의 원격 대면에 앞서 챗봇 형태의 서비스를 통해 자유롭게 대화하는 방식이다. 상담이나 진료를 위한 인공지능 챗봇은 환자에게 증상이나 현재 상태를 묻고 이를 기록하여 이후 의료진이 환자와 대화할 때 기초 데이터로 활용할 수 있도록 돕는다. 특히 딥러닝 기반의 대화 엔진은 다양한 표현으로 이뤄지는 환자의 대화 내용을 맥락에 따라 정확하게 인식하는 데 도움을 준다. 기존의 시나리오 기반 챗봇은 정의된 시나리오에서 벗어나는 대화를 할 수 없는 한계가 있다. 또 인공지능을 적용한 경우라도 기술 수준이 낮을 때는 사용하는 단어나 구문이 달라질 경우 같은 의미라도 다르게 해석하여 잘못된 대답을 하게 된다. 최근 지속해서 발전하고 있는 딥러닝 기반의 자연어 처리 인공지능 엔진은 이런 한계를 극복하고 환자의 말을 정확히 알아듣고 의료진에게 실질적인 도움을 제공하는 방식으로 적용되고 있다. 원격 모니터링에 적용된 인공지능은 환자에게서 나오는 다양한 생체 신호를 분석하여 환자의 상태 이상을 미리 확인하고 환자나 의료진에게 경고를 하는 방식으로 작동한다. 환자가 스마트 워치나 스마트 링 등 웨어러블 디바이스를 착용하고 다양한 생체 신호를 수집하여 이를 인공지능을 통해 분석하는 방식이다. 사실 이런 방식은 원격 모니터링 상황에서뿐만 아니라 병원 내에서도 중환자실 등에서 환자의 다양한 생체 신호를 확인하고 의료진에게 정보를 제공하는 방식으로 사용되고 있다. 예를 들어, 가우스 서지컬(Gauss Surgical)은 컴퓨터 비전을 사용하여 출산 중 혈액 손실을 모니터링한다. 출산 중 출혈은 산모가 사망하는 중요한 원인이지만 예방할 수 있다. 가우스 서지컬은 병원 적용 테스트에서 출산 시 출혈량을 의료진의 시각적 확인해 비해 4배 높은 정확도로 확인했다고 밝히기도 했다. 또 메디컬 인포메틱스(Medical Informatics)의 경우 머신러닝 기술을 적용해 환자의 바이탈 신호, 인공호흡기, EMR 데이터 등을 수집 및 합성하여 병상에 있는 환자의 상태를 모니터링하는 솔루션을 공급하고 있다.

AI to streamline Healthcare Processes 의료 프로세스 효율화를 위한 인공지능 의료 행위는 단지 환자의 진단, 진료, 치료에만 국한되지 않는다. 병원 방문 전에 상담과 예약이 이뤄진다. 이를 위해 콜센터가 운영된다. 입원 환자에게는 기본적인 의식주가 제공되며, 이를 위한 보조인력이 존재한다. 입원 중에 환자는 다양한 처치나 치료, 검사를 받게 되고 이 과정에 다양한 간호간병서비스도 제공된다. 이런 부가 활동은 간호사를 중심으로 다양한 보조 인력들이 제공하고 있다. 문제는 이 과정에 간호사의 업무 부담이 높다는 점이다. 특히 입원 병동 간호사의 경우 환자 관리의 연속성 유지를 위해 효율적인 기록 관리와 업무 인계가 중요하지만 위급한 환자를 돌보는 경우 기록이나 업무 인계 시점을 놓쳐 초과 근무가 수시로 발생한다. 또한, 환자 관리 이외의 부가 업무 등의 발생으로 인해 업무 효율이 떨어지고 이는 다시 초과 근무의 원인이 된다. 병원 업무는 인력 집약도가 높으며 업무 부담을 낮추기 위해서는 추가 인력의 고용이 필요하지만, 현재의 의료 비용 구조는 높은 인건비를 감당하기 어려운 상황이다. 이런 이유에서 간호 업무를 중심으로 인공지능을 도입해 간호 업무의 효율성을 높이고 의료 서비스의 질을 재고하려는 노력이 이뤄지고 있다. 포티투마루는 용인세브란스, 국립암센터 등과 함께 자연어 처리에 특화된 인공지능을 도입해 간호 업무를 효율화하고 있다. [포티투마루: AI 어시스턴트 서비스 개요] 먼저, 콜센터나 키오스크 등에 대화형 인공지능을 적용해 초진환자를 위한 문진 서비스를 제공한다. 초진 환자의 경우 병력, 진료받고자 하는 증상, 현재 상태 등에 대한 문진이 필요하며 주로 간호사나 수련의가 해당 업무를 담당한다. 이런 초진 환자 문진의 경우 확인할 주요 사항이 정형화되어 있으며, 질의에 대한 환자의 대답을 정확하게 이해하고 처리하는 것이 서비스의 핵심이다. 의료 현장에서의 대화 데이터에 특화된 자연어 처리 엔진은 높은 정확도로 환자의 답변을 처리할 수 있다. 입원 병동에서 간호사 업무 보조를 위한 인공지능 서비스가 제공된다. 입원 병동에서 간호사는 일종의 민원센터와 같은 역할을 한다. 통증 등으로 몸이 불편해지거나, 진료나 검사를 위해 시간에 맞춰 이동해야 하거나, 긴급한 상태 변화에 담당 의사를 호출하는 등의 환자 관리부터 환자복을 바꿔입거나, 식사에 변동 사항을 발견하는 등의 환자 생활 관리에 대한 부분까지 1차적으로 간호사의 손을 거치게 된다. 이 가운데 환자의 이동, 담당 의사의 호출, 환자복이나 식사에 대한 내용은 사실상 간호사는 말을 전달하는 역할에 그친다. 이런 부분은 인공지능 스피커의 에이전트와 같은 간호 보조 업무에 특화된 인공지능 어시스턴트 기능으로 간호사의 업무를 대신할 수 있다. 그만큼 간호사는 환자 관리 업무에 집중할 수 있게 된다.

[특집] 인공지능과 헬스케어의 융합, 기술사업화 시장 키운다

[특집] 인공지능과 헬스케어의 융합, 기술사업화 시장 키운다

인공지능 역량확보 위해 생태계 조성 필요, 정부 지원도 늘어야

헬스케어와 인공지능의 만남

데이터를 확보하라

인공지능 기반 영상 진단

AI 헬스케어의 미래

“인류의 건강을 혁신할 수 있도록 인공지능(AI)이 헬스케어 산업에서 빛을 발할 시기가 도래했다.”인텔 보건 생명공학 및 신기술 부문 총괄 매니저, 스테이시 슐만(Stacey Shulman)는 최근 이렇게 강조하면서 자체적으로 조사한 결과를 발표한 바 있다. 임상의가 개인화된 프로토콜을 개발하는 것을 지원하는 것부터 임상 작업 간소화 및 유전체학에서 통찰력을 확보하는 업무까지 인공지능을 도입하는 것은 많은 사람이 처음에 생각했던 것보다 더 빠르게 진행되고 있다는 것이다.지난해 7월, 인텔이 미국의 헬스케어 분야 리더들을 대상으로 진행한 조사에 따르면, ▲84%의 응답자가 임상 작업에 이미 인공지능을 도입했거나 도입할 예정이라고 응답했다. 이는 2018년 37%의 동일한 질문에 대한 답변 대비 크게 증가한 수치다.특히, 의료분야에서 중요한 신뢰성부분도 큰 변화가 감지됐다. 인공지능의 임상 결과를 신뢰하기까지 앞으로 2년이 걸릴 것이라는 대답은 ▲2018년 54%에서 ▲2020년 67%로 증가했으며, 진단이나 검진을 분석하는데 인공지능을 신뢰하기까지 앞으로 2년이 걸릴 것 이라는 답변은 ▲2018년 40%에서 ▲2020년 62%로 상승했다. 헬스케어 분야 리더들의 94%는 인공지능이 초기진단 단계에서 의료진에게 예측 분석을 제공한다고 응답했고, 92%는 인공지능이 임상 결정 지원을 위해 활용될 것에 동의한다고 응답했다.헬스케어 분야에 인공지능 기술이 빠르게 도입되고 있다.고령화 시대에 접어들면서 양질의 헬스케어 서비스에 대한 관심이 늘어나고 있고 이에 인공지능 헬스케어 시장 규모가 급성장하고 있다. 인공지능 기술이 헬스케어 산업에 혁신적인 가치를 창출 할 것으로 전망되면서 글로벌 기업들은 인공지능 헬스케어 분야에 총력을 기울이고 있다. 구글과 IBM 등 세계적인 기업들이 모두 인공지능 최우선 활용분야로 헬스케어를 지목하고 있는 것은 잘 알려진 사실이다.인공지능 헬스케어 기술은 다량의 데이터를 인간수준의 지능을 활용하여 질병 진단, 예측 및 개인 맞춤형 치료할 수 있도록 개발된 기술을 포괄한다. 인공지능과 헬스케어의 융합은 의사결정 지원, 프로세스 효율화 등 의료 서비스의 질 향상은 물론 새로운 제품과 서비스를 제공하는데 기여할 것으로 전망된다. 인공지능 헬스케어는 ▲신속 정확한 정밀 진단 및 치료 ▲일관성 있는 개인별 맞춤형 질병 예측 및 예방 ▲시공간의 제약이 없는 측정, 진료 등의 특징을 가진다.스마트 헬스케어에서 가장 많이 보편화된 인공지능 분야는 데이터 기반의 의료 서비스이다. 인공지능이 적용된 웨어러블 디바이스는 신체 일부에 착용함으로써 개인의 생체신호를 모니터링하고 분석한다. 의류에 디바이스를 설치하여 체온, 심박 데이터를 수집하거나 침대와 디바이스를 결합하여 사용자의 수면 데이터를 분석하는 방법도 있다.보쉬(Bosch)는 지난 1월에 열린 온라인 CES 전시회에 셀프러닝이 가능한 피트니스 트랙킹용 웨어러블(wearables) 및 히어러블(hearables) AI 센서를 최초로 선보였다. AI 자체가 센서상에서 구동되기 때문에(엣지 AI) 운동 중 인터넷 연결이 필요 없어 에너지 효율 및 데이터 프라이버시가 향상된다고 업체 측은 설명했다.또한, 보쉬는 공기질, 상대습도 등을 측정하는 센서도 선보인다. 이는 코로나 바이러스 극복 노력에 있어 특히 중요한 데이터인 공기 중 에어로졸 농도 관련 정보를 알려준다고 해서 이목을 끌었다. 이번에 최초로 선보인 휴대용 헤모글로빈 모니터(portable hemoglobin monitor)는 손가락 스캐닝을 통해 빈혈을 감지한다. AI가 탑재된 헤모글로빈 모니터는 30초 이내 결과를 보여주며 실험실 검사 또는 혈액 채취가 필요 없다.이 밖에도 자체 웨어러블 디바이스를 생산하지 않고 빅데이터 만을 활용하여 의료 서비스를 제공하기도 한다. 특히 인간의 유전자정보를 활용하여 사용자의 질병 가능성을 예측하기도 하고, 채팅 애플리케이션을 통해 사용자의 평소 기분이나 행동을 분석하여 정신질환을 진단하기도 한다.아마존웹서비스(AWS)는 지난 12월, AWS 리인벤트 행사에서 의료 및 생명과학 조직을 위해 설계된 아마존 헬스레이크(Amazon HealthLake)를 발표했다. HIPAA 인증을 획득한 아마존 헬스레이크는 다양한 사일로와 이기종 플랫폼에 걸친 조직의 전체 데이터를 중앙집중식 AWS 데이터 레이크로 집계하고, 머신러닝(ML)을 통해 이러한 정보를 자동으로 정규화한다.또한 각각의 임상 정보, 태그, 인덱스 이벤트를 표준화된 라벨을 통해 시간 순으로 식별하여 쉽게 검색 가능할 뿐 아니라, 모든 데이터를 FHIR(Fast Healthcare Interoperability Resources) 산업표준 형식으로 구성해 개별 환자 및 전체 모집단의 건강 상태를 전체적으로 파악할 수 있다.아마존 헬스레이크는 고객이 보다 쉽게 쿼리와 분석을 수행하며, 머신러닝을 구동해 새롭게 정규화된 데이터에서 의미있는 가치를 도출해 내도록 한다. 헬스케어 시스템, 제약회사, 임상 연구진, 의료 보험사와 같은 조직들은 아마존 헬스레이크를 사용해 헬스 데이터의 트렌드와 이상 징후를 포착함으로써 질병의 진행, 임상 실험의 효과, 보험료의 정확성 등에 대한 보다 정확한 예측이 가능하다.최근엔 전통적인 의료데이터 외에 새로운 데이터를 의료서비스에 결합하려는 시도가 많아지고 있다.기업의 핵심 역량에서 헬스케어 데이터는 중요한 요소다. 하지만 데이터를 수집하고 획득하는 과정에서 많은 비용과 시간이 필요하다. 여기에 암호화나 개인정보 보호 기술도 요구돼 데이터를 공개하는 쪽이나 활용하는 쪽이나 기술적 장벽에 부딪힌다.한국정보화진흥원 우창완 선임연구원은 보고서에서 “근래 의료계에서는 자발적으로 데이터를 공유하는 환자들을 찾고 있다. 사용자들은 자발적으로 데이터를 공유하면서 의료 연구에 도움을 주거나 맞춤 서비스를 받는 혜택을 얻을 수 있고, 의료계는 데이터 획득을 보다 용이하게 한다”고 말했다.현재도 각종 생체?의료 데이터가 엄청난 속도로 쌓이고 있지만 앞으로도 그 속도는 가속화할 것이다. 현재 인공지능 시장의 성장세를 가늠해보면 의료 데이터를 활용하는 사업 모델은 계속 늘어날 것이다.소프트웨어정책연구소의 김태호 선임연구원은 ‘인공지능과 헬스케어 산업 혁신’ 세미나 발표에서, “양질의 빅데이터 확보가 헬스케어 인공지능 성공의 선결 조건인데 국내는 데이터를 기관별로 보유하여 통합 공동 활용 방안을 마련해야 한다. 미국 정부는 과거 정밀의학에 2억1500만 달러 예산을 책정하고, 자발적 참여에 의한 백만 명 이상의 국가 코호트 구축에 1억 3000만 달러를 배정할 정도로 데이터 확보에 노력하고 있다”고 밝혔다.인공지능 수술로봇, 영상진단 분야도 뜨고 있다. 의료과정을 정밀하게 진행할 수 있는 고도화된 기계, 전자, 영상기술뿐만 아니라 이들을 컨트롤하는 두뇌까지 갖춰야 하는데 이 두뇌는 ‘머신러닝(Machine Learning)’의 정교함이 핵심이다.머신러닝은 데이터 기반의 학습능력을 가진 인공지능의 한 분야이다. 머신러닝은 알고리즘을 통해 데이터를 학습하고 기존보다 더 나은 결과물을 예측하도록 설계된다. 머신러닝은 특정 현상을 구분하기 위해 데이터의 패턴을 분석하는 지도학습(Supervised Learning)과 데이터가 분류되지 않아도 되는 시스템에서 활용되는 비지도학습(Unsupervised Learning)이 있다.강화학습은 데이터 분석에 대한 피드백을 학습하는 형태인데 의사결정 케이스를 반복적으로 학습시킨다. 머신러닝 알고리즘의 한 종류인 딥러닝은 인간의 두뇌의 학습 원리를 알고리즘화하는 방식으로 데이터를 반복 학습시킴으로써 예측 능력을 계속해서 강화시킨다.신약개발에도 인공지능의 활용이 늘고 있다. AI를 활용하여 신약개발 연구 분야 사업을 진행하고 있는 글로벌 기업들은 주로 신규 후보물질 도출 분야에 이를 활용하고 있으며, 질병기전 이해,바이오마커 구축 등 다양한 분야에서 비즈니스 모델을 만들어 가고 있다.이처럼 인공지능 기반의 헬스케어가 각광을 받고 있지만 풀어야할 숙제도 많은 게 현실이다. 데이터 활용을 위한 개인정보보호 문제에서부터 법적 규제 적용까지 산적한 문제가 많다.인공지능 헬스케어 산업의 실용화 동향 관련하여 과학기술일자리진흥원의 박찬홍 연구원, 이장우 팀장은 “인공지능 기술과 헬스케어의 융합은 앞으로 기술이전, 창업 등 기술사업화 시장을 더욱 활발하게 할 것”이라며, 하지만 “이를 위해서는 몇 가지 이슈도 극복해야 한다. 나라마다 차이는 있지만 국내의 경우 생체 및 의료정보를 활용하기 위해서는 개인정보보호법, 생명윤리법, 의사법 등 다양한 법적 규제의 극복이 필요하다”고 지적했다.다양한 분야의 신규 및 기존 기업들의 인공지능 역량확보를 위해 생태계 조성이 필요하다는 설명이다. 국내 인공지능 헬스케어 산업에서 영상인식, 신약개발 분야에 보다 많은 기업이 활동하기위해서는 헬스케어 기업들이 업그레이드할 수 있도록 적극적인 지원이 필요하다.한국과학기술연구원 융합연구정책센터의 박혜경 연구원도 인공지능(AI) 헬스케어산업 현황 및 동향 보고에서 “인공지능 헬스케어산업 분야가 향후 고부가가치 산업으로 주목받게 됨에 따라 세계 주요국들의 지속적인 투자 예상된다”며, “인공지능 헬스케어산업에 꾸준한 지원으로 의료수준 및 의료서비스의 질이 대폭 향상될 것으로 전망된다. 인공지능 헬스케어산업에서 우리나라는 세계적 경쟁력 확보를 위하여 국가적 차원의 적극적 투자정책이 필요하다”고 강조했다.

헬스케어를 주름잡는 AI 기술 성공사례_인공지능이 바꾸는 ‘헬스케어’ 산업

Tech Issue – 헬스케어를 주름잡는 AI 기술 성공사례_인공지능이 바꾸는 ‘헬스케어’ 산업

Tech Issue 는 글로벌 기술 트렌드 및 해외 유망 기술을 소개하기 위해 (주)비전컴퍼니와 협력하여 게재하고 있습니다.

▲ 이형민 대표

(주)비전컴퍼니

사람들은 인공지능(AI) 기술 하면 가장 먼저 무엇을 떠올릴까? 바로 바둑을 잘 두는 알파고나 소피아와 같은 인공지능 로봇을 먼저 떠올릴 것이다. 그러나 전문가들의 생각은 다르다.

“앞으로 인공지능 기술은 ‘헬스케어’ 분야에서 가장 큰 업적을 이룰 것”이라는 것이다.

미국 시장조사기관 ‘CB Insight’가 발표한 ‘Top AI Trends To Watch in 2018’ 보고서를 보면 AI 스타트업 투자가 가장 많은 산업으로 ‘헬스케어’가 꼽힌 것을 보면 향후 인공지능 기술이 어떤 분야에서 두각을 드러낼 것인지 짐작할 수 있다.

다 아는 것처럼 우리 인간의 건강 문제를 다루는 헬스케어 시장은 전 세계에서 가장 큰 시장으로 성장했다.

이 큰 시장에 인공지능 기술이 적용되는 것은 어찌보면 당연한 것이라 할 수 있다.

그렇다면 이 인공지능 기술은 앞으로 헬스케어 산업을 어떻게 바꿀까? 인공지능 기술로 인한 헬스케어 산업의 변화는 크게 제품과 서비스 두 가지로 살펴볼 수 있다.

첫 번째 ‘제품’은 병을 진단하거나 치료하는 기기의 엄청난 발전을 불러올 것이며, 두 번째 ‘서비스’는 사람의 건강 유지 및 관리를 위한 다양한 서비스의 발전을 불러올 것이다.

첫 번째 ‘제품’의 영역을 조금 더 깊이 살펴보면, 지금까지 사람의 판단에 의존해 온 여러 가지 치료법들을 인공지능이 대체할 가능성이 매우 크다.

인공지능은 혈액, 유전자, 신체조직 등을 면밀히 분석해 병의 발병 상황 및 그 가능성을 판단해 즉시 알려줄 것이며, 질병이 있는 환자의 경우 면밀히 분석한 데이터를 의료진에게 보고해 적절한 치료법을 즉시 받을 수 있도록 안내할 것이다.

한 예로 IBM ‘왓슨’은 환자의 진단정보와 논문 등 각종 의학정보를 분석해 의사에게 적합한 치료법과 근거를 제공하고 있다.

의사는 왓슨의 제안 내용을 바탕으로 최적의 치료법과 우선순위에 따라 환자를 진료하게 된다.

무엇보다 신약 개발 분야에서도 인공지능은 무한한 가능성을 제공할 것이다.

보통 신약 개발에는 많은 시간과 비용을 들여야만 하는데, 인공지능 기술 덕분에 시간과 비용을 절약할 수 있으며, 그동안 개발하지 못했던 희귀 질환을 치료할 수 있는 신약도 앞으로 개발될 가능성이 높다.

국내 신약 개발 분야의 스타트업 ‘스탠다임(Standigm)’도 인공지능 기술과 시스템 생물학 기술을 접목해 신약 개발 기간을 획기적으로 단축할 수 있는 컴퓨터 모델링 기술을 개발한 바 있다.

스탠다임의 이 기술은 방대한 데이터를 분석해 인간이 생각하기 어려운 패턴을 파악하는 것이 핵심으로, 딥러닝 알고리즘을 기반으로 정보를 분석·통합해 신약이 될 가능성이 가장 높은 후보를 예측해 낸다.

단순히 결과를 예측할 뿐만 아니라, 해당 후보가 어떻게 만들어지는지에 대한 설명까지 제공하는 것으로 알려졌다.

두 번째 ‘서비스’의 영역을 조금 더 깊이 살펴보면, 고객에게 직접 제공되는 서비스의 다양한 변화가 예상된다.

즉, 인공지능이 모니터링해서 예측한 건강정보가 알람으로 실시간 제공되어 고객의 행동 변화를 유도한다.

특히 병을 치료하고 있는 환자의 경우 인공지능이 지속해서 데이터를 모니터링하고 있다가 위험을 예측해 환자 및 의사에게 즉시 보고한다.

이로 인해 환자는 즉시 치료 방법과 행동을 개선하게 되고, 의사도 즉시 출동해 환자를 더 빨리 치료할 수 있게 된다.

또한 인공지능의 분석 및 예측의 정확도 향상을 통해 과잉진료, 오진, 의료사고 등의 문제를 해결할 수 있고, 비용 등의 측면에서 낭비되는 요소를 줄여줄 수 있다.

IBM ‘왓슨’과 같은 인공지능 기술은 병원치료 비용을 약 50% 정도나 감소시킬 수 있을 것으로 예상하고 있다.

따라서 인공지능은 환자 치료 및 관리 능력의 향상으로 헬스케어 시스템의 운영 효율성 향상을 가져올 것이며, 민간 및 공공의 데이터를 통합·분석해 다양한 헬스케어 서비스 상품 출시를 촉진할 전망이다.

구글의 암 탐지 기술 ‘LYNA’

구글의 인공지능 부문(Google AI)은 샌디에이고 해군 의료센터(Naval Medical Center San Diego)와 공동으로 유방암 림프샘 전이를 자동 감지하는 새로운 암탐지 알고리즘을 개발했다.

LYNA라고 명명한 이 인공지능 시스템은 의학저널(The American Journal of Surgical Pathology)의 논문을 통해 발표된 바 있다.

일반적으로 전이성 유방암은 의사들도 판별하기가 매우 어려운 암으로 정평이 나 있다.

2017년에 발표한 한 연구자료에 따르면 숙련된 의사도 제한된 시간과 제약하에서 미세한 암 전이 중 62%를 놓칠 수 있다는 예측을 하기도 했다.

LYNA는 병리학을 훈련할 때와 같은 프레임워크를 적용해 학습시켜 탄생했다.

오픈소스 이미지 인식 딥러닝 모델인 인셉션-v3(Inception-v3)를 바탕으로 입력된 이미지에서 픽셀 수준까지 암을 찾아낼 수 있다.

연구팀은 LYNA를 학습시키는 과정에서 교육에 이용하는 조직 라벨을 양성과 종양 비율 4:1로 해 학습 효율을 높이는 데 성공했다.

그 결과 LYNA는 전이성 유방암에 대한 영상 진단 정확도 측정에서 무려 99.3%에 달하는 정확도를 달성할 수 있게 됐다고 한다.

물론 오인 사례도 있었지만, 기포나 출혈, 염색 과다 등 결함에 영향을 받지 않고 인간보다 뛰어난 전이성 유방암 탐지 능력을 보여준 것은 틀림없다.

연구팀은 LYNA가 병리학보다 높은 전이성 유방암 탐지 능력을 갖췄으며 병리학 진단 지원을 통해 진단과정의 효율성 향상은 물론 오류 감소에도 도움을 줄 수 있다고 강조한다.

의료 분야에서 인공지능을 활용하려는 시도는 계속되고 있다.

스탠포드 대학교의 ‘CNN’

스탠포드대학 연구팀도 딥러닝을 활용해 피부암 여부를 이미지로 확인할 수 있는 알고리즘을 발표했다.

지난해 1월 학술지 네이처에 게재된 연구 결과에 따르면 피부암 진단은 주로 육안이나 현미경을 이용한 사람의 눈을 통해 이뤄진다.

피부암이라고 확신하거나 육안으로 판단이 서지 않을 때는 다음 단계로 넘어간다.

연구팀은 이 눈에 해당하는 부분을 컴퓨터에 맡긴 것이다. 피부과에서 현미경으로 보는 것처럼 피부암이 의심되는 부위 사진을 찍어 암 여부를 확인하는 것이다.

연구팀은 CNN(Convolutional Neural Networks) 알고리즘을 통해 1,000개체 유형에 달하는 이미지 128만 장을 학습시켰다.

또 의학계나 인터넷 등에서 수집한 2,032종 질병으로 이뤄진 12만 9,450개 데이터를 이용해 CNN을 학습시켰다.

그 결과 교육받은 CNN에 370개 이상 피부암 의심 사례를 보여주니 해당 사진에 관해 확인을 한 피부과 전문의 21명과 거의 같은 결과를 보였다.

앞선 유방암이나 피부암 모두 이미지 인식과 학습을 통해 이뤄진 것이다.

스탠포드대학 연구팀의 경우 스마트폰에서도 이 같은 인지가 가능하도록 할 계획을 세우고 있다.

이런 연구가 계속된다면 스마트폰으로 촬영만 하면 그 자리에서 곧바로 피부암 같은 일부 증상에 대한 식별이 가능해지는 시대가 열릴 수도 있다.

인공지능 신약개발 기업 ‘신테카바이오’

현재 국내에서 인공지능 기술을 활용해 신약을 개발하고 있는 기업으로 In-Silico 제약사를 표방하고 있는 기업인 신테카바이오(Syntekabio)와 스탠다임(Standigm)을 들 수 있다.

In-Silico 제약사란 실제 실험실 연구원이 실험도구 등을 사용해 신약을 개발하는 것이 아니라, 컴퓨터 시뮬레이션 등을 이용해 가상환경에서의 실험을 통해 신약을 개발하는 제약사를 말한다.

신테카바이오는 타깃과 후보 약물 간의 정확한 결합도를 예측하는 데 이 인공지능을 사용해 합성의약품을 개발할 예정이다.

이를 위해 이미 유한양행, CJ헬스케어 등과 신약 개발 MOU도 체결한 바 있다.

신테카바이오처럼 In-Silico 개념의 신약 개발이 가능하게 된 이유는 염기서열 정보, 3차원 단백질 구조 등 분자생물학 데이터가 폭발적으로 증가하면서 딥러닝을 통해 대량의 분자생물학, 화합물 활성 데이터 등을 효율적으로 분석할 수 있게 됐기 때문이다.

이뿐 아니라 많은 양의 분자생물학 데이터를 빠르게 분석할 수 있는 대규모 연산 처리 장치, 저장 장치 등의 컴퓨팅 자원을 클라우드를 통해 활용할 수 있게 됐기 때문에 ‘타깃’에 더 잘 반응할 수 있는 신약후보 물질을 탐색할 수 있게 되었고, 이 후보물질을 주입했을 때 더 큰 효능을 얻을 수 있는 환자들을 선별하는 데 도움을 줘 신약개발을 효율적으로 할 수 있게 됐다.

다양한 헬스케어 기술…인간의 삶의 질을 향상시켜

의료 산업은 뛰어난 서비스 품질을 지속적으로 제공하기 위해 새로운 방식으로 진화했다.(사진=셔터스톡)

다양한 헬스케어 기술을 통한 의료 혁신이 빠르게 이뤄지고 있어 인류의 삶의 질이 급속히 개선될 전망이다. 현재 의료 산업은 인공지능, 모바일 기술, IoT, 웨어러블과 같은 새로운 기술이 유기적으로 연결되면서 급속히 발전하고 있다. 현대의료기술을 발전시키고 있는 핵심 자원은 각종 디지털 기술과 방대한 양의 데이터로, 이를 어떻게 효율적으로 융합시키느냐가 관건으로 제시되고 있다.

글로벌 전염병의 영향으로 모든 산업 중에서 의료가 가장 많이 변화했다. 의료 서비스에 대한 높은 접근 수요와 보호된 건강 정보의 디지털화를 지원하는 데 필요한 기술과 방법이 상당한 발전을 이루었다. 의료 산업은 뛰어난 서비스 품질을 지속적으로 제공하기 위해 새로운 방식으로 진화했다.

미래를 내다볼 때, 헬스케어 기술을 이끄는 트렌드를 염두에 두는 것이 중요하다. 레거시 소프트웨어와 인프라는 현대 병원과 요양원의 성공에 매우 중요하지만, 이러한 시스템이 새로운 기술과 통합될 수 있는 방법 또는 궁극적으로 보다 안정적인 시스템으로 대체되는 방법을 고려하는 것이 중요하다. 신뢰성이나 접근성을 희생하지 않으면서 성능, 생산성, 효율성 및 보안을 개선하는 데 중점을 두어야 한다. 헬스케어 산업을 디지털 혁신으로 이끄는데 가장 중요한 기술을 살펴보겠다.

AI는 특히 의료 분야에서 유용한 기술로 큰 파장을 일으켰다.(사진=셔터스톡)

의료분야의 인공지능(AI) “신약개발과 진단프로세스에 유용해”

여러 산업 분야에서 AI는 특히 의료 분야에서 유용한 기술로 큰 파장을 일으켰다. 판데믹은 우리 사회에 지대한 영향을 미쳤지만 첨단 기술은 우리가 앞서 나갈 수 있도록 도왔다. 실제로 캐나다 토론토의 한 회사는 코로나19가 전 세계적으로 퍼질 것이라고 예측할 수 있었다. BlueDot이라는 응용 프로그램은 매일 65개 이상의 다른 언어로 100,000개의 미디어 소스를 스캔하여 거의 실시간으로 위험한 발병을 확인할 수 있다.

백신 개발도 머신 러닝의 발전으로 많은 진전이 이루어졌다. 기계 학습을 사용하여 단백질 조각을 식별함으로써 COVID-19 백신은 어느 때보다 훨씬 짧은 기간에 개발되었다.

AI는 군중의 온도 데이터를 분석하는 데도 도움이 되었다. 이것은 잠재적으로 증상이 있는 개인을 식별하기 위한 열 검사를 훨씬 더 실행 가능한 옵션으로 만든다. AI 기반 안면 인식의 발전으로 얼굴 마스크를 착용한 경우에도 개인을 식별할 수 있게 되었다. 또한 사용자가 특정 장소에서 마스크를 착용하고 있는지 감지할 수 있다.

AI는 전염병을 치료하고 대응하는 것 외에도 많은 응용 프로그램이 있다. AI는 정보 처리 및 의사 결정의 효율성을 높이는 데 매우 유용하다. 의료 산업에서 머신 러닝은 신약 개발과 진단 프로세스의 효율성에 매우 유용하다.

AI는 COVID-19의 영향으로 치료를 받는 사람들을 위해 CT 스캔을 분석하여 폐렴을 감지 하도록 돕고 있다. 마이크로소프트는 방사선 치료 AI 도구인 Project InnerEye를 개발했다. 이는 환자의 3D 윤곽 처리 프로세스를 가속화하여 완료 시간을 몇 시간이 아닌 몇 분으로 단축한다. 프로젝트는 깃허브(GitHub)의 오픈 소스다. Project Hanover는 펍메드(PubMed)의 생의학 연구 논문을 목록화하기 위한 또 다른 마이로소프트 AI 시스템이다. 이는 암 진단 시간을 줄이는 데 도움이 되며 각 환자에게 어떤 약물을 사용해야 하는지 결정하는 데 도움이 된다.

AI 혁신은 신체 건강에만 적용되는 것이 아니다. MIT와 하버드 대학교 연구원은 머신 러닝을 활용하여 COVID-19 전염병과 관련된 추세와 정신 건강을 추적했다. AI 모델을 사용하여 그들은 수천 개의 온라인 레딧(Reddit) 메시지를 분석하여 자살 충동과 외로움에 대한 주제가 일정 기간 동안 거의 두 배로 증가했음을 발견할 수 있었다. 이것은 더 많은 인구의 정신 건강에 대한 우리의 이해를 변화시킬 잠재력이 있다.

챗봇은 원격 의료의 효율성을 향상시킬 수 있는 잠재력이 있다. UCLA의 연구원들은 챗봇 기술과 AI 시스템을 결합하여 VIR(Virtual Interventional Radiologist)을 만들었다. 이는 환자가 스스로 진단할 수 있도록 돕고 의사가 환자를 진단하는 데 도움을 주기 위한 것이다. 자연어 처리로 구동되는 챗봇은 1차 진단을 제공할 수 없지만 프로세스를 지원하는 데 사용할 수 있다. 또한 적절한 치료가 시작되기 전에 환자로부터 정보를 얻을 수 있도록 잘 갖추어져 있다.

의료 분야에서 AI의 성공을 좌우하는 가장 중요한 요소는 데이터다. 머신 러닝으로 구동되는 소프트웨어는 훈련 데이터 세트의 품질을 결코 능가하지 못한다. 모델에 제공하는 데이터의 품질과 폭이 높을수록 성능이 향상된다. AI 팀은 최고의 결과를 얻기 위해 협력할 수 있는 숙련된 소프트웨어 개발자와 데이터 과학자로 구성하는 것이 중요하다.

의료 제공자가 인터넷을 통해 환자와 정기적으로 화상 회의를 갖고 우려 사항을 논의하고 조언을 제공한다.(사진=셔터스톡)

원격 진료의 진화 “의료 제공자가 환자와 정기적인 소통에 기여”

원격 의료는 2020년 판데믹이 시작된 이후 먼 길을 왔다. 2022년에는 의료 제공자가 인터넷을 통해 환자와 정기적으로 화상 회의를 갖고 우려 사항을 논의하고 조언을 제공한다. 이를 지원하는 인프라가 크게 향상되었다. 원격 의료는 2026년까지 1,856억 달러로 성장할 것으로 예상된다.

그 가능성을 고려하기 전에 원격 의료의 가장 중요한 문제 중 하나는 규정 준수다. 2020년 판데믹의 절정기에 일부 제한이 완화되었지만 의료 제공자가 환자와 의사 소통하는 데 사용하는 응용 프로그램을 고려하는 것이 중요하다. 개인 건강 정보를 처리할 수 있는 보안 및 인증이 요구된다.

많은 경우에 법적 개인 정보 보호 요구 사항을 보다 구체적으로 준수할 수 있는 전용 솔루션이 필요하다. 원격 의료 전용 앱이 필요한 경우 가장 중요한 기술 중 하나가 웹 브라우저와 모바일 애플리케이션을 연결하고 오디오, 비디오 및 데이터를 전송할 수 있는 오픈 소스 API 기반 화상회의 시스템인 WebRTC다. 이것은 원격 회의에 특히 유용하다.

대부분의 클라우드 스토리지 서비스에 데이터를 저장하는 것은 상대적으로 안전하지만 보호되는 건강 정보에 대한 규정을 반드시 준수해야 하는 것은 아니다. 규정을 준수하는 클라우드 호스팅 솔루션은 EVR(전자 건강 기록)이 필요한 모든 의료 운영의 기능과 효율성을 유지하는 데 중요하다.

그러나 원격 회의 및 데이터 호스팅이 조직에 유용할 수 있는 유일한 기능은 아니다. 보안, 위치 서비스, 예약 관리, 보안 메시징, 의료 제공자 리뷰, 방문 기록 및 웨어러블 통합과 같은 기타 기능은 모두 잠재적으로 유용한 기능이다.

일부 애플리케이션은 구글 Fit 및 애플 HealthKit과 같은 소비자 기기의 피트니스 데이터를 저장해야 할 수 있다. 이러한 통합을 안전하고 효율적인 방식으로 유지할 수 있으면 환자와 간병인에게 큰 도움이 될 수 있다.

증강 현실(AR), 가상 현실(VR) 및 혼합 현실(MR)을 포함하는 포괄적인 용어인 확장 현실(XR)은 의료 산업에서 많은 잠재력을 가지고 있다.(사진=셔터스톡)

의료환경의 확장 현실(XR) “수술 지원과 의료진 교육에 효과적”

증강 현실(AR), 가상 현실(VR) 및 혼합 현실(MR)을 포함하는 포괄적인 용어인 확장 현실(XR)은 의료 산업에서 많은 잠재력을 가지고 있다. 수술 지원에서 원격 의료 애플리케이션 지원에 이르기까지 AR 및 VR 기술은 의료 산업을 크게 개선할 수 있다.

AR과 MR은 다양한 의료 환경에서 유용하다. 이 기술의 가장 인기 있고 유용한 형태 중 하나는 외과의가 마이크로소프트 Hololens 2와 같은 MR 헤드셋을 사용하는 것이다 . 헤드셋은 수술 중에 두 손을 사용할 수 있도록 하는 동시에 외과의에게 헤드업 정보를 제공할 수 있다.

이러한 수술은 헤드업 정보를 통해 강화될 수 있을 뿐만 아니라 협업 및 원격 노력이 될 수 있으며 교육 목적을 지원할 수 있다. 헤드셋의 헤드 마운트 카메라 보기를 통해 다른 의사가 수술을 관찰하고 조언을 제공할 수 있다. 장치의 ‘홀로그램’ 특성은 교육을 강화하는 데에도 사용할 수 있다. AR 헤드셋을 활용하여 유사한 애플리케이션이 가능하다. 향후 다양한 수술 유형으로의 활용을 확대하기 위해서는 보다 전문화된 소프트웨어 솔루션이 필요할 것이다.

AR은 헤드셋과 수술실에만 국한되지 않는다. 이 기술은 간호사가 혈액을 채취할 정맥을 찾는 데도 사용할 수 있다 .

증강 현실 개발은 AI와 특수 센서에 크게 의존하여 작동한다. 모바일 장치용으로 개발하든 다른 종류의 하드웨어용으로 개발하든 적절한 데이터 및 소프트웨어 전문 지식이 필요하다. AR 개발자는 이러한 제품을 성공적으로 만들기 위해 대상 하드웨어의 소프트웨어 프레임워크와 함께 AI를 활용하는 데 중점을 둔다.

페이스북이 메타(Meta)로 브랜드를 변경하고 소셜 가상 현실 경험에 중점을 두는 것이 정당한지 여부에 대한 큰 논쟁이 있다. 메타버스가 지나치게 과장된 경우라도 의료 환경에서 가상 현실은 가능성이 있다.

헬스케어 분야에서 현재 사용 중인 VR의 가장 유용한 애플리케이션 중 하나는 훈련이다. 의사를 위한 가상 교육 상황을 생성하면 의사가 기술을 향상하고 수술을 준비하는 데 도움이 될 수 있다. VR은 또한 치료를 위해 일부 상황에서 사용될 수 있다. 예를 들어, VR 치료를 사용하여 고소 공포증 및 PTSD(외상 후 스트레스 장애)와 같은 공포증으로 고통받는 사람들을 돕는다. 노인들의 과거 기억을 깨우고 정서적 웰빙을 개선하기 위해 VR 치료가 활용되기도 한다.

메타의 만화 스타일 회의로의 전환은 VR 치료에 유용할 수 있지만 전통적인 원격 회의를 대신하는 이것의 효과는 아직 두고 봐야 한다. 그러나 공간 오디오와 같은 이 분야의 일부 기술은 보다 몰입감 있는 디지털 경험을 제공함으로써 원격 의료 시스템의 효율성을 향상시킬 가능성이 있다.

의료 산업에서 가장 중요한 혁신 중 하나는 웨어러블 기술의 발전이다. (사진=셔터스톡)

의료분야의 IoT 및 웨어러블 “지속적인 환자 모니터링이 가능해”

웨어러블과 IoT 기술이 대중화되면서 의료 산업에서 웨어러블의 잠재력이 크게 성장했다. 이러한 추세는 원격 의료 및 원격 의료 기술에 적용하기 위해 많은 사람들이 의료 사물 인터넷에 마이크로 프로세싱을 도입하면서 비롯되었다.

2021년 초에 연결된 IoT 장치는 113억개였다. 글로벌 IoT 의료 장치 시장은 2021년 265억 달러에서 2026년 942억 달러에 이를 것으로 예상된다. 이러한 기술을 통해 의료 산업이 점점 더 연결됨에 따라 IoT를 무시할 수 없다.

의료 산업에서 가장 중요한 혁신 중 하나는 웨어러블 기술의 발전이다. 원격으로 하루 종일 환자의 상태를 모니터링하거나 개인이 자신의 상태를 모니터링하는 기능은 매우 중요하다. 딜로이트(Deloitte)가 실시한 설문조사에 따르면 사용자의 39%가 스마트워치를 가지고 있는 것으로 나타났다. 소비자용 스마트워치가 더 널리 보급됨에 따라 의료 애플리케이션에 사용될 가능성에 주목해야 한다.

사람의 건강을 모니터링하는 데 유용할 수 있는 스마트워치가 제공할 수 있는 가장 기본적인 것 중 하나는 심박수다. 그러나 스마트워치가 측정할 수 있는 것은 이것만이 아니다. 이 장치는 만보계와 혈액 산소 포화도를 통해 신체 건강을 모니터링할 수도 있다. 낮은 혈중 산소 포화도는 특수 센서 없이 감지하기 어렵다. 이것은 생명을 위협하는 상태일 수 있으므로 이 센서가 있는 스마트워치는 생명을 구할 수 있다.

스마트워치는 또한 사용자의 혈액 활력을 측정하는 능력도 향상되고 있다. PPG(Photoplethysmography)는 혈액량과 구성의 변화를 측정할 수 있는 광학 기술이다. 스마트워치에 사용하기 위해 소형화했기 때문에 사용자에게 그 어느 때보다 많은 혈액 바이탈 데이터를 제공할 수 있다. 의료 제공자는 이 데이터를 사용하여 환자에게 조언하고 진단을 완료할 수 있다.

스마트워치는 의료 산업에 잠재력이 있는 유일한 웨어러블이 아니다. 바이오 패치와 스마트 보청기는 비슷한 수준의 영향을 미친다. 바이오 패치는 스마트워치를 사용하지 않고도 사람의 생체 정보를 더 잘 이해할 수 있게 해준다. AI는 또한 보청기의 소음 차단을 개선하는 데 사용될 수 있다.

의료 분야의 IoT 기술에 대한 가장 심오한 응용 프로그램 중 하나는 사물 인터넷을 신체 인터넷으로 변환하는 스마트 알약의 개념이다. 스마트 알약은 의약품 역할을 할 뿐만 아니라 의료 제공자에게 환자에 대한 귀중한 정보를 제공할 수 있는 식용 전자 제품이다. 2017년에 최초로 미국 FDA가 승인한 스마트 알약이 출시된 바 있다.

업계에서는 수많은 마이크로컨트롤러를 동시에 사용하는 경향이 있어 이러한 모든 컴퓨터가 서로 통신하도록 하는 것이 어려울 수 있다. 극복해야 할 또 다른 장애물은 거의 모든 제조업체가 자체 독점 프로토콜을 사용하여 장치가 서로 통신하도록 하는 것이다. 이는 통합을 어렵게 만들 수 있다.

많은 환경적 요인이 통신을 방해할 수 있으므로 연결성도 문제가 될 수 있다. 이를 극복하기 위해서는 로컬 마이크로컨트롤러의 버퍼링 방식이 더욱 강력해져야 한다. 보안도 항상 걱정거리이기도 하다.

개인 정보 보호와 보안은 의료 산업에서 중요한 우선 순위를 차지한다.(사진=셔터스톡)

의료 개인 정보 보호 및 보안 “안전한 환자 데이터 사용과 유출 방지를 보장”

효율성과 치료 품질의 범위를 넘어 개인 정보 보호와 보안은 의료 산업에서 중요한 우선 순위를 차지한다. HealthITSecurity.com에 따르면 550개 이상의 조직이 작년에 4천만 명 이상의 사람들에게 영향을 미치는 데이터 침해를 겪었다.

조직이 개인 정보 보호 규정을 준수하는지 확인하는 것은 값비싼 데이터 침해를 피하기 위한 필수적인 첫 번째 단계다. 국제적으로 환자에게 서비스를 제공하는 경우 유럽 연합의 GDPR(일반 데이터 보호 규정) 규정을 고려하는 것이 좋다.

호환되는 화상 회의 소프트웨어가 이미 존재하지만 때로 더 맞춤화된 솔루션을 만들어야 하는 경우가 있다. 기존 데이터 인프라가 사용 가능한 옵션과 잘 통합되지 않는 경우 특히 그렇다. 더 중요한 것은 의료 제공자가 기존 시스템을 사용하여 타사 소프트웨어를 통해 환자와 ePHI(Electronic protected health information)를 교환하려는 경우 공급업체와 비즈니스 제휴 예외를 받아야 한다는 것이다.

타사 프로그램이 환자 데이터를 완전히 보호할 수 있다는 보장은 아직 없다. 또한 원격 의사 호출을 통해 정보를 안전하게 유지하기가 어렵다. ePHI 데이터는 구조화된 형식으로 전송되어야 하며 이러한 호출은 프로세스를 복잡하게 만들 수 있다.

귀, 각막, 뼈 및 피부는 모두 3D 바이오프린팅을 위한 임상 테스트 가능한 신체 기관이다.(사진=셔터스톡)

장기 관리 기술 및 바이오프린팅 “생명 연장을 위한 이식 기술”

2028년 까지 세계 이식 시장 규모가 265억 달러에 이를 것으로 예상됨에 따라 장기 이식은 확실히 의료 산업의 중요한 부분이다. 매튜 에브리(Matthew Everly)에 따르면 매년 미국에서 약 2,000건의 심장 이식이 이루어진다. 그러나 50,000명 이상이 심장 이식을 필요로 하는 것으로 추산된다.

이 문제에 대한 접근 방식 중 하나는 장기 관리 기술을 개선하는 것이다. 이것은 장기가 몸 밖에 있는 동안 이를 돌보는 것을 의미한다. 트랜스메딕스(Transmedics)가 개발한장기 관리 시스템은 좋은 예다. 이 장치는 적절한 관리, 열 및 중요한 영양소 공급을 통해 몇 시간 동안 심장, 폐 또는 간을 신체 외부에 유지할 수 있다.

이 기술의 미래는 더 오랜 기간 동안 장기를 보존하기 위해 의사의 개입 없이 자동으로 조치를 취하는 AI에 의존할 수 있다.

아마도 더 중요한 것은 머신 러닝이 보존 중인 장기가 이식에 적합한지 여부를 더 잘 결정할 수 있다는 것이다. 이것이 빨리 결정될수록 더 빨리 생명을 구할 수 있다.

장기를 신체 외부에서 유지하는 것 외에도 다른 옵션도 탐색해야 한다. 공상 과학 소설처럼 들릴지 모르지만 3D 인쇄 장기는 개발 중이지만 이미 임상 테스트에 들어간 매우 실제적인 기술이다. 귀, 각막, 뼈 및 피부는 모두 3D 바이오프린팅을 위한 임상 테스트 가능한 신체 기관이다.

프로세스는 기존의 3D 프린팅과 크게 다르지 않다. 먼저 조직의 디지털 모델을 만들어야 한다. 프린팅 공정에 사용되는 재료는 말 그대로 바이오잉크(bioink)라고 불리는 살아있는 세포이기 때문에 해상도와 매트릭스 구조에 세심한 주의가 필요하다 . 그런 다음 자극으로 기관의 기능을 테스트해야 한다.

장기의 거부반응을 예방할 수 있는 방법 중 하나는 이식이 필요한 환자의 세포를 사용하는 것이다. 이 세포는 배양에서 성장한 다음 인쇄에 필요한 바이오 잉크로 배양될 수 있다.

바이오프린팅은 과거에도 이루어 졌지만 아직 주류를 이루지는 못했다. 장기 및 수용자 환자 특성의 AI 분석을 통해 장기가 새로운 숙주와 호환되도록 더 잘 설계될 수 있다.

의료 기술은 모든 영역에서 계속 향상될 것이다. 업계 전반에 걸쳐 보안이 향상되지만 위협은 항상 진화하며 대응보다는 예방을 통해 처리해야 한다. AI, 머신 러닝 및 XR과 같은 혁신적이고 진화하는 기술로 인해 치료의 품질과 효율성이 계속 향상될 것이다.

AI타임스 박찬 위원 [email protected]

[관련기사][CES 2022] 日 스타트업, 건강·의료기기 분야 존재감 나타냈다

[관련기사][CES 2022] “혹시 나도 치매?”…AI가 진단하고 치료도 도와요

헬스케어 인공지능

헬스케어 인공지능의 개념과 기술, 디바이스, 진단 및 치료 등 활용 분야를 사례 중심으로 설명한 헬스케어 인공지능 지침서!!! ◈ 도서의 개요 제4차 산업혁명의 핵심은 인공지능입니다. 인공지능 시대를 낙관하는 많은 과학자는 불과 20~30년 뒤에 인공지능이 인간지능을 뛰어넘을 것이라고 확신하면서 지식생태계의 대변환을 예고하고 있습니다. 인공지능과 인간의 공존 시대는 이미 현실로 부각되면서 우리 곁에 바짝 다가왔습니다. 빅데이터와 ‘딥러닝’으로 불리는 기계학습으로 무장한 인공지능이 우리 삶 곳곳에 파고들면서 헬스케어에 대한 중요성은 더욱 커지고 있습니다. 의료와 보건, 법조, 미디어와 같은 전문직도 예외일 수 없습니다. 본서는 헬스케어 인공지능의 기본적인 개념과 인공지능 주요 기술, 디바이스, 진단 및 치료 등 활용 분야에 대하여 사례 중심으로 다루었습니다. 보건의료를 공부하는 학생뿐만 아니라 보건 및 의료관련 분야의 종사자 등 관련 독자들이 쉽게 이해할 수 있도록 노력하였습니다. 제1장 헬스케어 인공지능에서는 인공지능의 발전 과정, 인공 지능에 대한 분류,활용 및 핵심 기술 요소를 다루었습니다. 제2장 헬스케어 인공지능 동향에서는 국내외 정책 및 기술 개발, 표준화 실태를 다루었습니다. 제3장 헬스케어 빅데이터에서는 빅데이터 개념과 처리 기술, 인공지능 의료기기 개발, 적용 실태를 서술하였습니다. 제4장 인공지능 주요 기술에서는 데이터의 정제와 딥런링, 지식 표현과 활용, 자연어 처리와 음성인식, 영상 및 감성 인식을 다루었습니다. 제5장 인공지능과 디바이스에서는 인공 사물인터넷과 의료와 로봇을 다루었습니다. 제6장 인공지능을 활용한 건강관리에서는 건강관리, 건강 예측, 가상 체계 구현을 위한 디지털 트윈을 다루었습니다. 제7장 인공지능을 활용한 진단, 제8장 인공지능을 활용한 치료, 제9장 인공지능과 감염병, 제10장 의료기관의 인공지능 활용에서는 로봇 의사, 로봇 간호사, 로봇 약사를 다루었습니다. 제11장 헬스케어 인공지능 보안에서는 개인정보 보호와 인공지능 보안 위협, 인공지능 정보 보안을 다루었습니다. 마지막 12장 인공지능에 대한 고려사항에서는 윤리적 과제와 인공지능과 직업의 변화에 대한 예측을 서술하였습니다. 본서의 학습 목적을 달성하기 위해서는 단원별 기본적인 내용을 충분히 습득하고, 연습문제를 본 교재 중심으로 해결한다면 일차적인 이해를 하는 데 도움이 될 것입니다.

키워드에 대한 정보 헬스 케어 인공 지능

다음은 Bing에서 헬스 케어 인공 지능 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.

이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!

사람들이 주제에 대해 자주 검색하는 키워드 헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC)

  • MBC
  • MBC뉴스
  • 뉴스데스크
  • newsdesk
  • 뉴스투데이
  • newstoday
  • 8시뉴스
  • 아침뉴스
  • 뉴스
  • 정오뉴스
  • news

헬스케어 #기술도 #AI가 #대세‥미래의 #의료 #체험해 #보니 #(2022.01.07/뉴스데스크/MBC)


YouTube에서 헬스 케어 인공 지능 주제의 다른 동영상 보기

주제에 대한 기사를 시청해 주셔서 감사합니다 헬스케어 기술도 AI가 대세‥미래의 의료 체험해 보니 (2022.01.07/뉴스데스크/MBC) | 헬스 케어 인공 지능, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.

Leave a Comment